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Abstract

Splice variants have been shown to play an important role in tumor initiation and progression

and can serve as novel cancer biomarkers. However, the clinical importance of individual

splice variants and the mechanisms by which they can perturb cellular functions are still

poorly understood. To address these issues, we developed an efficient and robust computa-

tional method to: (1) identify splice variants that are associated with patient survival in a sta-

tistically significant manner; and (2) predict rewired protein-protein interactions that may

result from altered patterns of expression of such variants. We applied our method to the

lung adenocarcinoma dataset from TCGA and identified splice variants that are significantly

associated with patient survival and can alter protein-protein interactions. Among these

variants, several are implicated in DNA repair through homologous recombination. To com-

putationally validate our findings, we characterized the mutational signatures in patients,

grouped by low and high expression of a splice variant associated with patient survival and

involved in DNA repair. The results of the mutational signature analysis are in agreement

with the molecular mechanism suggested by our method. To the best of our knowledge, this

is the first attempt to build a computational approach to systematically identify splice variants

associated with patient survival that can also generate experimentally testable, mechanistic

hypotheses. Code for identifying survival-significant splice variants using the Null Empiri-

cally Estimated P-value method can be found at https://github.com/thecodingdoc/neep.

Code for construction of Multi-Granularity Graphs to discover potential rewired protein inter-

actions can be found at https://github.com/scwest/SINBAD.

Author summary

In spite of many recent breakthroughs, there is still a pressing need for better ways to diag-

nose and treat cancer in ways that are specific to the unique biology of the disease. Novel

computational methods applied to large-scale datasets can help us reach this goal more

effectively. In this work we shed light on a still poorly understood biological process

that is often aberrant in cancer and that can lead to tumor formation, progression, and
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invasion. This mechanism is alternative splicing and is the ability of one gene to code

for many different variants with distinct functions. We developed a fast and statistically

robust approach to identify splice variants that are significantly associated with patient

survival. Then, we computationally characterized the protein products of these splice

variants by identifying potential losses and gains of protein interactions that could explain

their biological role in cancer. We applied our method to a lung adenocarcinoma dataset

and identified several splice variants associated with patient survival that lose biologically

important interactions. We conducted case studies and computationally validated some

of our results by finding mutation signatures that support the molecular mechanism sug-

gested by our method.

Introduction

Large-scale cancer sequencing initiatives have opened up a window into the genome of indi-

vidual cancers, offering unprecedented opportunities for studying the functional consequences

of molecular alterations in human cancers [1]. However, despite new evidence highlighting

the importance of cancer-specific splice variants in tumor initiation and progression, the role

played by splice variants in the biology of human cancers and patient survival is still poorly

understood.

To address this need, we developed a novel, statistically robust, multi-granular method to

identify splice variants that are significantly associated with cancer patient survival. After clini-

cally important splice variants are detected, our approach identifies variant-specific losses and

gains of protein domains that can potentially rewire the cellular interactome, enabling a mech-

anistic interpretation of the role played by these splice variants. We applied this approach to

Lung Adenocarcinoma (LUAD) using data from The Cancer Genome Atlas (TCGA), based

on the clinical importance of the disease, the large number of observed point mutations that

can lead to aberrant splicing, and the spread in patient survival time.

With lung cancer as the leading cause of cancer-related deaths [2], novel treatments are

constantly developed to improve patient survival while reducing the toxicity and side-effects of

conventional chemotherapy. In this regard, molecular targeted therapy is arguably one of the

most investigated new paradigms in oncology. The general strategy in targeted therapy is to

use small molecules to inhibit specific pathways important for cancer cell survival and inva-

siveness [3]. However, for molecular targeted therapy to be successful, it is important to iden-

tify highly specific molecular mechanisms that lead to tumor survival and metastasis. For this

reason, cancer-specific alternative splicing has received increasing attention for its role in

tumor formation [4, 5], and methods to target splicing in cancer have recently been proposed

[6] using RNAseq data.

While some argue in favor of the robustness of gene level analysis of RNAseq data [7], splice

variant analysis offers unique information [8]. Sebestyén et al. developed a computational

method to identify splicing signatures in cancers using TCGA data, showing that splicing sig-

natures can be used to distinguish tumor from normal samples [9]. Yang and co-workers

developed a web server called ISOexpresso to identify predominantly expressed isoforms in

TCGA data [10]. Recent work by Climente-González has investigated the potential functional

consequences of splice variants in TCGA datasets, highlighting Gene Ontology terms that are

enriched in isoform switches and protein interactions that might be lost or gained [11]. We

suggest that more detailed understanding of the influence of transcriptional expression on
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disease mechanisms in lung cancer may be gleaned from granularity-aware integration of

RNASeq data with other sources of domain knowledge.

The strategy we propose here is to combine established RNAseq processing methods with

patient survival analysis at the gene and splice variant level. Exon-skipping and splice variant

level survival analysis have been shown to outperform gene level analysis at predicting patient

survival [12]. Many methods for integration of RNAseq data exist and usually occur during

downstream processing [13]. However, to the best of our knowledge this is the first attempt at

building a high-throughput approach for survival analysis at the gene or splice variant level for

early integration with domain sources.

Another important requirement for confident knowledge extraction is that of robustness,

defined as stability of the results with respect to small changes in the parameters of the method.

Non-parametric survival analysis requires a threshold that splits patients into subpopulations

(e.g. an expression threshold). Previously, high-throughput survival analysis using arbitrary

thresholds were shown to be sensitive to changes in patient groups [14]. One known approach

for increasing this robustness is to find the minimum p-value by sampling multiple thresholds.

However, this produces p-values that are non-uniform and skewed. Lausen and Schumacher

examined this problem for the logrank test, developing an equation for estimating the cor-

rected p-values [15]. Yet, this type of correction method was not developed for high-through-

put analysis, where multiple hypothesis testing is required and is dependent on very small

changes of individual p-values. To overcome these issues, we developed a reliable and high-

throughput survival analysis method called NEEP (null empirically estimated p-values). This

method requires no distribution assumptions, guarantees statistically valid p-values, and may

be implemented in a high-throughput way.

We applied this method to the LUAD RNAseq dataset from TCGA to conduct survival

analysis at the splice variant level, identifying variants that are significantly associated with

patient survival. Then, we integrated these results with protein-domain annotation and pro-

tein-protein interaction data to provide a mechanistic interpretation for the potential role

played by these clinically relevant splice variants in tumor formation and progression. More

specifically, we identified variants that lose or gain protein domains involved in mediating pro-

tein-protein interactions. We refer to this integration approach as a multi-granularity graph

(MGG). Fig 1 shows the overall workflow of the method.

In the absence of a gold standard, we conducted case study analysis with literature review to

assess the biological plausibility of the inferred graphs. We found a number of splice variants

associated with survival analysis that show distinct domain patterns that could mediate protein

interactions. All case studies over these models uncovered potential for the alteration of the

protein interactions to impact patient survival. Several of these case studies are discussed in

the results.

In summary, our main contributions are the following: (1) we use the splice variant granu-

larity level as a way to identify changes in protein mechanisms that can affect patient survival;

(2) we present a novel, computationally efficient, and robust method to perform high-through-

put survival analysis; and (3) we integrate multiple data types for inferring biologically plausi-

ble and potentially actionable molecular targets in lung cancer.

Results

NEEP identifies splice variants significantly associated with patient

survival

One of the contributions of this work is the development of a statistically robust and computa-

tionally efficient method to identify optimal expression thresholds that yield minimum p-
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values when performing survival analysis over a large number of transcripts. The efficiency of

the NEEP method is due to the fact that we can estimate empirical p-values for all transcripts

by computing only one null distribution, as opposed to having to perform sample permuta-

tions for every transcript (as discussed in detail in Materials and methods). To visually show

this, we plot the p-value distributions of 100 randomized gene expression patterns of size 1000,

against 20 simulated null distributions of size 1000 obtained by shuffling samples (Fig 2A).

The overlap between these distributions visually confirms that the same null distribution can

be utilized across all expression patterns without the need for expensive sample permutations

for every transcript.

We ran NEEP using 10 randomly generated null distributions of 1,000,000 isoform simula-

tions. In all 10 repetitions, there were 181 NEEP significant (FDR< 0.1) splice variants from

the LUAD dataset. Since the order of splice variants in NEEP does not depend on the null but

only their statistical significance does, these 181 splice variants were identical each time. The

mean hazard ratio of the significant splice variants was 3.122 and the minimum was 2.18.

Fig 1. Workflow for generating multi-granularity graphs (MGGs). Using the NEEP method significant splice variants were

calculated, utilizing clinical data, the complementary-DNA reference library, and RNA-Seq data from Ensembl and TCGA. Multi-

granular graphs were constructed for known protein-protein interactions from BioGRID, mapped from Ensembl to at least one

significant splice variant. Domains were predicted for each splice variant using HMMER3 [16] and Pfam [17]. Gained and ghost

domains were identified in splice variants associated with survival. Final MGGs represent potential lost or gained protein

interactions associated with patient survival.

https://doi.org/10.1371/journal.pcbi.1007469.g001
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The distribution of all the p-values is nearly uniform, as can be seen in Fig 2B. The small

deviation of low p-values from the uniform distribution is due (as expected) to the significant

splice variants.

Case study of multi-granular graphs linked to DNA repair

After identifying splice variants significantly associated with survival, we followed the proce-

dure described in Materials and Methods and summarized in Fig 1 to generate multi-granular

graphs (MGGs). Briefly, MGGs show splice variant specific protein-protein interactions that

might be gained or lost as a result of gains or losses of protein domains in splice variants signif-

icantly associated with patient survival.

After constructing the MGGs using the NEEP significant splice variants, we obtained 50

MGGs (the complete list is available in S3 File). We first checked whether the MGGs we

obtained were representative of the full set of significant splice variants identified by NEEP. To

do that, we performed Gene Ontology enrichment analysis on NEEP significant genes using

Funset [18], NEEP significant isoforms, and genes represented in MGGs, as discussed in S1

File. All GO enrichment term groups obtained at the gene or isoform levels were also present

in the MGGs, as shown in S1 Fig.

Using these MGGs and information available from the literature, we investigated possible

mechanisms that can explain why these splice variants are correlated with survival of lung can-

cer patients. Here we discuss three case studies linked to DNA repair. Additional MGGs are

discussed in the supplemental materials S2 File. All discussed MGGs are visualized in Fig 3.

RAD51C-202 loses ability to bind to the Holliday junction, XRCC3, and HELQ. NEEP

suggests that the increased expression of RAD51C-202 is associated with lower patient

Fig 2. NEEP yields uniformly distributed p-values. (A) The p-value distribution is shown for the minimum p-value

method and NEEP. An ideal statistical test produces p-values that are uniform under the null. (B) Density line plots

were constructed for each of 100 simulations of 1000 random abundance patterns (blue) and 20 sets of 1000 values

chosen at random from the initial 1,000,000 null distribution (red). The overlap between the two groups of density

plots empirically confirms that the null distribution is the same for all expression patterns, given identical clinical data.

https://doi.org/10.1371/journal.pcbi.1007469.g002
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survival. Further, the interaction between RAD51C-202 and XRCC3 is prevented because of

several missing domains. Upon deeper inspection using RCBP PDB and Ensembl, we see that

RAD51C-202 is missing two exons that are present in the remaining RAD51C isoforms. The

first exon allows RAD51C to bind to the Holliday junction, a relationship missed by the MGG.

The second exon contains the domains which allows RAD51C to bind to XRCC3. RAD51C

and XRCC3 have long been known to form a complex (CX3 complex) which regulates genetic

recombination and DNA repair [19]. Dysruption of this complex (perhaps via increased

expression of RAD51C-202) may promote cancer in two ways. First, loss of RAD51C has been

implicated in tumorigenesis [20]. Second, it was suggested that the CX3 complex increases

mitochondrial stability, reducing the risk of cancer [21]. In addition, HELQ interacts with

RAD51C within the BCDX2 complex [22]. Disruption of the BCDX2 complex increases cellu-

lar susceptibility to agents that induce DNA-interstrand crosslinks [23]. Thus, the additional

transcription of the RAD51C-202 isoform which is missing the domain necessary to bind to

HELQ may result in DNA-interstrand crosslinks.

Fig 3. Multi-granularity graphs. Splice variants are in blue solid boxes and domains are in dotted boxes. The significant splice

variant (left box) is linked to its gained (green) and ghost (white) domains. Domains in gray belong to the non-significant splice

variant (right box). Splice variants of the same gene that have identical domain connections in the MGG are stacked and their

identifiers are listed below the boxes. RAD51C-202 has two MGGs which are separated to simplify visualization.

https://doi.org/10.1371/journal.pcbi.1007469.g003
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RAD23A-201 loses interaction with CHEK1 proteins. The RAD23A-201 isoform does

not include the UBA_2 domain, which is found in all of the other RAD23A isoforms. The sur-

vival analysis indicates that a high expression of RAD23A-201 is associated with lower patient

survival. RAD23A operates by bringing proteins marked for ubiquitination to the proteasome,

avoiding its own degradation. Without UBE_2, RAD23A is ubiquitinized, preventing its role

in nucleotide excision DNA repair and protein degredation [24]. Further, without the UBA_2

domain, the PPI between RAD23A and CHEK1 via the DDI between UBE_2 and Pkinase will

not occur. It may be possible that RAD23A phosphorylates CHEK1 since its cousin, RAD17, is

a known phosphorylator of CHEK1 [25]. However, this is unlikely since RAD23A is known to

function primarily through its association with the proteasome [26]. The inhibition of the PPI

with CHEK1 may prevent degredation of CHEK1. Under several circumstances CHEK1 pro-

motes tumor growth and increases therapy resistance [25]. Thus the reduction of RAD23A

with longevity could inhibit CHEK1 degredation and allow promotion of tumor growth and

therapy resistance.

INTS7-202 has altered structure and number of TPR domains. INTS proteins serve as

members of the Integrator complex (INT). The roles of this complex are diverse but suggestive

of potential roles in cancer, such as mediation of RNA polymerase II or DNA damage response

[27]. Yet the INT is ‘modular’, containing different subunits of INTS genes and causing differ-

ent effects on the role of INT [28]. The MGG model suggests that the interaction between

INTS7 and INTS8 may be effected by the loss of a few TPR domains in INTS7-202. The TPR

domains are common PPI domains which allow the construction of many protein complexes,

including INT. Losses or disruptions of these domains in INTS7-202 may cause instability

and prevent the formation of INT. Alternatively, given that many other TPR domains are

unaffected by the alternative splicing of INTS7-202, INT may still form but function differ-

ently. In addition, INTS proteins also function outside of the INT complex [27].

RAD51C-202 expression is linked to a characteristic mutational signature

and lower patient survival

The biological models discussed above suggest a role played by these splice variants in DNA

repair. Alterations in DNA repair mechanisms result in characteristic mutations signatures.

We hypothesized that patients in the RAD51C-202 low expression and high expression groups

might have different mutation signatures reflecting different abilities to perform DNA repair

via homologous recombination.

As shown in Table 1, RAD51C-202 is associated with COSMIC mutation signatures 2, 3,

11, 12, 16, 17, and 23. Of particular interest, signature 3 (Fig 4) is reported by COSMIC as

Table 1. COSMIC mutation signatures associated with RAD51C-202 expression.

High—Low (Mean Contribution) Description from COSMIC

Signature2 11.032 Activity of AID/APOBEC deaminases

Signature3 3.864 DNA double-strand break-repair by homologous recombination

Signature11 0.809 Similar mutation pattern to alkylating agents

Signature12 2.323 Unknown

Signature16 3.194 Unknown

Signature17 -0.016 Unknown

Signature23 0.533 Unknown

The difference between the mean contributions of low from high RAD51C-202 expression groups to each significant

mutation signature is reported. Signature 4, associated with smoking, is not significant.

https://doi.org/10.1371/journal.pcbi.1007469.t001
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associated with failure in DNA double-strand breaks in homologous recombination. Indeed,

the results of the Mood’s test indicate that signature 3 is more prevalent in patients with high

expression of RAD51C-202 than in patients with low expression (p< 0.0232, Fig 4). RAD51C-

202 had the highest association with COSMIC signature 2, which is known to be caused by

AID/APOBEC activity. However, we could not find more information from the literature

regarding this particular signature.

Since smoking is commonly associated with lung cancer and may cause particular muta-

tion patterns, the relationship between RAD51C-202 with signature 3 could be confounded

by smoking. However, smoking does not appear to be a confounding factor in RAD51C-202

association with COSMIC gene signatures. As can be seen in Table 2, no smoking variable

was significantly different between patients with low and high expression of RAD51C-202.

Fig 4. Mutation signature 3 association with RAD51C-202. Box-plots were generated for the signature 3

contribution to patients in low (red) and high (blue) expression of RAD51C-202. Patients with 0 values for

contributions were removed for visualization. Signature 3 contributed more to the mutation signatures of patients with

high RAD51C-202 expression than those with low expression.

https://doi.org/10.1371/journal.pcbi.1007469.g004

Table 2. Statistical test results comparing smoking variables to RAD51C-202 expression.

Smoking Variable Data Type Statistical Test p-value

Cigarettes Per Day Metric Welch Two Sample T-test 0.086

Years Smoked Integer Wilcoxon Rank Sum Test 0.098

Is Smoker Binary 2-Sample Test for Equal Proportions 0.383

https://doi.org/10.1371/journal.pcbi.1007469.t002
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Further, signature 4 contribution (found in smokers) was not significantly associated with

RAD51C-202 abundance. In addition, survival does not appear to be a confounding factor.

The survival Cox-PH p-value for RAD51C-202 was significant with and without using sig-

nature 3 contribution as a confounding factor (p-values: 0.010 and 0.036). The proportion

of NEEP significant isoforms that were associated with signature 3 was insignificant (p-

value = 0.6403).

Robustness of NEEP to changes in patient population

We conducted 100 simulations by removing 5% and 10% of the patients at random prior to

running NEEP. We compared the rank of the significant isoforms observed in the full dataset

to their rank in the simulations. Fig 5A shows the range of the middle 50% ranks from the

simulations, and it also plots the original, observed values. Of the 181 observed significant

splice variants, few had ranks greater than 400 out of 69,561. Further, splice variants with

lower observed rank had lower variance in the simulations. In addition and as expected,

ranks in the 5% simulations were much lower than the ranks in the 10% simulations. Fig 5B

Fig 5. Robustness of single threshold methods and NEEP. (A) The central 50 ranks for the 100 simulations of each of

the 181 significant splice variants are plotted as a shaded range according to their mean simulated rank, separately for

the 5% simulations (red) and the 10% simulations. Each of these ranges correspond to an observed (non-simulated)

rank, which is plotted as a dot along the same x-axis. The 5% simulation ranges have lower means of simulation rank

than the 10% simulation ranges; thus the red dots are closer to the identity line. The maximum mean of the simulation

rank is lower for the 5% simulations; thus the red shade ends much sooner than the blue shade. (B) The density plot of

the observed vs. simulation pairs for the 181 significant splice variants.

https://doi.org/10.1371/journal.pcbi.1007469.g005
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is the density plot of the observed ranks paired with the 10% simulation ranks. The density

nearly follows the y = x line, where the observed rank is the same as the simulated rank. Once

again we see that splice variants with low observed rank have lower simulation variance than

variants of higher rank. Mean Spearman rank correlations between the entire set of observed

splice variants and the 5% and 10% simulation rounds were 0.861 and 0.931, respectively.

Overall, these results suggest that the NEEP method is fairly robust to removal of patient

samples.

Discussion

The goal of this work was to identify splice variants significantly associated with patient sur-

vival and provide possible mechanisms underpinning the associations. This first required a

statically valid approach to perform high-throughout survival analysis. To this end, we

developed NEEP. We then integrated the results with domain-domain and protein-protein

interaction data in order to uncover possible mechanisms of altered protein interaction in

cancer.

An exploratory survival analysis must be high-throughput to span all genes/splice variants

(in this study, 21,100 genes and 69,561 splice variants). Cox regression and Kaplan-Meier

(KM) curves are two options. We chose to avoid Cox regression for two reasons. First, we

violate the Cox regression assumption that the mechanism of censoring is not related to

patient survival, as patients who survive to the end of the study will have a higher survival

rate than the overall population at the outset. As discussed in the Methods, we can choose a

threshold range which prevents loss of statistical power due to this phenomena on the KM

test. Second, Cox regression firmly assumes the proportional hazards assumption, where the

assumption is looser in KM analysis. The effect of many splice variants on survival is not

constant over time, resulting in varying hazard rates. Driver genes are just one example that

violate this assumption.

The hypothesis of the KM logrank test is also better suited to this problem than Cox

regression: Cox regression tests against the null that the variability of the survival cannot be

explained by the variability of the splice variant, whereas the KM logrank test compares low
against high expression. Therefore, each KM hypothesis is associated with the maximum dif-

ference between two survival curves, and exact delineations of low and high expression are

extracted.

An important advantage of NEEP over the existing methods is that the optimal expression

threshold to separate patients into better vs. worse survival groups is automatically detected by

the method, and the resulting p-values are uniformly distributed under the null hypothesis,

allowing for proper multiple hypothesis correction. A current limitation of our approach is

that the multi-granularity graphs only highlight splice variants that can gain or lose protein-

protein interactions as a result of gains/losses of protein domains. Protein-DNA, protein-

RNA, and protein-ligand interactions are not considered. We plan to extend our work in this

direction in the near future.

By applying our method to the TCGA lung adenocarcinoma dataset, we identified several

splice variants that significantly correlate with patient survival. We then built multiparted,

multi-granular graphs (splice variant-domain-domain-splice variant) that allowed us to

identify putative losses and gains of protein-protein interactions associated with these

splice variants. Several of these variants turned out to be implicated in DNA repair through

homologous recombination. To computationally verify this, we performed a mutational sig-

nature analysis that supported the molecular mechanism suggested by the multi-granular

graphs.
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Materials and methods

Data retrieval and transcriptome profiling

We downloaded the TCGA Lung Adenocarcinoma (LUAD) dataset from the Cancer Geno-

mics Hub (CGHub). Of the 515 patients with RNA-Seq data, 75 were removed due to clinical

annotations suggesting possible confounding factors like “Prior malignancy” or “Synchronous

malignancy”. Eight patients were removed due to missing survival data, resulting in 432 total

patients. To reconstruct splice variant abundance estimates, the TCGA BAM files were

reverted back to fastq format using SAMtools [29].

We used Salmon [30] with default parameters to estimate transcript-level abundances

based on the Ensembl 91 cDNA library. Non-alignment methods such as Salmon offer accu-

rate abundance estimates at the splice variant level [31]. In addition, Salmon performed best

during a comparison of alignment-free methods [32]. Using Ensembl gene/splice variant map-

ping, we summed splice variant abundances to estimate gene abundance. TPM values were

used to represent the gene/splice variant abundances. We note that since non-parametric sur-

vival analysis utilizes two Kaplan-Meier curves for each gene/splice variant (one for high abun-

dance and one for low abundance), the choice of using counts, FPKM or TPM will result in

identical logrank p-values.

High-throughput survival analysis

We performed non-parametric survival analysis at the gene and splice variant level using a pre-

viously published approach (“minimum p-value”) and our new NEEP (“null empirically esti-

mated p-values”) method, as described below. The clinical files containing survival data were

obtained from TCGA. The days_to_death and days_to_last_followup were used as uncensored

and censored survival values, respectively.

Minimum p-value approach. Choosing the threshold which maximizes a test statistic

avoids the choice of an arbitrary threshold, while increasing reliability. Minimum p-values

were calculated for each gene and splice variant. The logrank test was performed on each pos-

sible split between high and low abundance within a threshold range of 0.15 to 0.85. This

method results in a distribution of p-values that is non-uniform and skewed to the left.

Empirical estimation of p-values. To overcome the limitations of choosing a single

threshold (arbitrary threshold) and minimum p-value methods (non-uniform p-values under

the null hypothesis), we developed a new approach resulting in null empirically estimated p-

values (NEEP). The method works by estimating the null distribution of the minimum p-value

approach, so that p-values under the null hypothesis are uniformly distributed, allowing for p-

value adjustment.

When using the logrank test with a single expression threshold t, the set of all possible p-val-

ues is finite, and it corresponds to all possible patient partitions into the low and high expres-

sion groups. By extension, the null distribution of the minimum p-value method is defined as

the entire discrete distribution of possible p-values across all values of t. The exact number of

possible p-values can be calculated as a function of s (the number of samples), l (the minimum

percentile threshold), and h (the maximum percentile threshold), according to the following

equation:

size of null ¼
Xbh�sc

i¼bl�sc

s
i

� �

ð1Þ

where bxc is the greatest integer less than or equal to x. To determine a viable range of thresh-

olds, we first chose minimum power and effect size. Given a sample size of 432 patients with
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151 recorded death events and an alpha of 0.1, to obtain a hazard ratio greater than 2 (or less

than 0.5) and a minimum power of 0.75, the survival curve with fewest patients must have at

least 62 members. This corresponds to a minimum percentile threshold of 0.143, which we

round in this study to 0.15 for simplicity. So, in this study we set l to 0.15 and h to 0.85.

Considering the size of s, enumerating all possible p-values is computationally unfeasible.

Therefore, we built a null distribution with 1,000,000 Monte Carlo simulations performed by

randomly partitioning samples into the two groups using all possible thresholds and extracting

the smallest logrank test p-value. We estimated p-values as the fraction of simulated values less

than or equal to the minimum p-values obtained from the actual data. As expected, the NEEP

procedure yielded uniformly distributed p-values. Since NEEP produces a uniform distribu-

tion of p-values, the probability that two adjacent p-values are not equal in the sorted list is

approximately one minus the ratio of samples to simulations. Ten times the number of tested

splice variants, which was 69,561�10 in our case, yields a theoretical probability of 90% that

two adjacent p-values are not equal. For simplicity, we rounded up to 1,000,000. Benjamini-

Hochberg adjustment was conducted on the NEEP p-values, and adjusted values less than 0.1

were considered significant.

It is noteworthy to mention that individual expression values do not impact the KM sur-

vival curve as long as they result in the same split between high and low expression. Therefore,

the NEEP procedure needs to be carried out only once for the whole set of genes/splice vari-

ants, provided the fraction of patients expressing the gene/splice variant is as large as or greater

than 1 − l, the minimum percentile threshold. In our dataset, this criterion was met by 21,100

genes and 69,561 splice variants. Thus, we empirically estimated the p-values of these genes/

splice variants using a single sampled null distribution. While effect sizes of the logrank test

are not as naturally interpretable as many other statistical tests, we calculated the hazard rate

ratio of high over low expression curves as well as the mortality rates at 1, 2, and 5 years. Code

for constructing NEEP values from clinical and expression data and calculating effect size sta-

tistics is available at https://github.com/thecodingdoc/neep.

Robustness

We measured robustness of the NEEP method by examining sensitivity of significant splice

variants to changes in the set of patients. We conducted two rounds of 100 simulations, where

5% and 10% of patients were randomly removed, respectively. Since the number of patients in

each simulation is then compared to the actual values, we expect the adjusted NEEP p-value

change is due to a smaller sample size. So we compared ranks instead of p-values to isolate the

sensitivity of NEEP p-values to resampling. We compared ranks of the significant isoforms in

the full dataset against their rank in the simulations.

Multi-granular graphs

We utilized data across multiple granularities to construct plausible graphs for the association

between splice variant expression and lung cancer survival. Specifically, we used protein-pro-

tein interactions (PPI) from BioGRID [33], domain-domain interactions (DDI) from 3did [34],

splice variant domain prediction using HMMER3.1 [16], and the survival analysis significance

values using NEEP, with the goal of identifying cancer-specific changes in PPI interactions.

The general structure of these multi-granular graphs (MGG) can be seen in Fig 1. The

outcome of the workflow consists of quadripartite networks, connecting splice variants with

their potential interaction partners via their domain-domain interaction, as variant-domain-
domain-variant paths.
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To build these graphs, we extracted protein-protein interactions from BioGRID v3.4.156

[33], retaining only physical interactions in human, resulting in 377,228 relationships. Of these

interactions, 348,609 involved proteins with an active Ensembl ID. Because PPIs are reported

at the gene product level, we expanded the interactions to include all possible variant-variant

interactions (73,588,825). To identify graphs associated with survival, the left-most splice vari-

ant is required to be both survival-significant (NEEP FDR< 0.1) and protein-coding, leaving

655,407 unique possible interactions.

We identify two domain patterns of interest, “ghost” and “gained”. Ghost domains are

those that are present in survival-insignificant splice variants within the same gene, but are not

found in the survival-significant splice variant. Gained domains are not found in the survival-

insignificant splice variants but are present in the survival-significant splice variants. By incor-

porating these gained and ghost domains direct into their PPI context, we can consider MGGs

as potential interaction changes caused by domain exclusion or inclusion. Genes without mul-

tiple splice variants were removed from further analysis. We downloaded the 11,200 domain-

domain interactions (DDI) from 3did [34], where inclusion requires a known protein-protein

structure to support the interaction. Variant-domain membership was determined using

HMMER3.1 [16] with default parameters and the Pfam database [17]. After removal of inter-

actions without DDI support, 5912 interactions remained. Of these, only 1208 had gained or

ghost domains. There were 50 genes with an isoform significant for survival for these 1208

interactions. Code for constructing MGG interaction paths from variable data sources is avail-

able at https://github.com/scwest/SINBAD. We note that this tool may be used independently

of NEEP.

Identification of significant COSMIC mutation signatures

To examine if the splice variant RAD51C-202 was associated with homologous recombination

mutations, we utilized COSMIC gene signatures [35]. We used the optimal NEEP threshold of

RAD51C-202 to separate the patients into a low expression (344 patients) and high expression

(88 patients) group. Mutation data for each patient was downloaded from TCGA for all 4 vari-

ant callers: MuSE [36], MuTect [37], SomaticSniper [38], and VarScan [39]. Mutation profiles

for each patient were constructed as described as the 6 substitution types along with the neigh-

boring bases for a total of 96 mutation types using only mutations found by all four variant

callers. The Catalogue of Somatic Mutations In Cancer (COSMIC) has identified a set of 30

commonly identified mutation signatures deconvolved from cancer patient mutation profiles

[35]. We used MutationalPatterns [40] in R to find the linear contributions of each of the 30

signatures to a patient profile. We used Mood’s test for median to determine if the contribu-

tions were significantly different between low and high RAD51C-202 expression groups for

each signature.

To check for possible confounding factors, we considered three smoking variables reported

by TCGA and checked whether they were different between the low and high RAD51C-202

expression groups: cigarettes per day was tested using the Welch two sample t-test; years smoked
was tested using the Wilcoxon rank sum test; and the binary smoker variable was tested using

the two-sample test for equal proportions. In addition, we checked if survival confounded the

relationship between RAD51C-202 and signature 3. Because the causality between mutations

and survival must be directional, we conducted Cox-PH survival analysis of RAD51C-202 with

and without the contribution of Signature 3 as a confounding variable. Further, Mood’s test

was also conducted for the relationships between Signature 3 and the remaining splice variants

with MGGs. The exact binomial test was used to determine if the proportion of splice variants

significant for Signature 3 was greater than expected by chance.
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Supporting information

S1 Fig. Enrichment term cluster membership across granularities. Counts of genes belong-

ing to each enrichment cluster for the gene, isoform (splice variant), and MGG granularities

are displayed as bar lengths. Missing bars does not indicate no membership, just insignificant

enrichment of any term in the cluster.

(TIF)

S1 File. Enrichment analysis methods.

(PDF)

S2 File. Additional case studies of MGGs.

(PDF)

S3 File. List of multi-granularity graphs. This table reports the entire list of MGGs for the

TCGA LUAD dataset. The file does not contain the exact paths, only the members of each

component of the MGG.

(TSV)
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