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Abstract

Background: Gene Ontology enrichment analysis provides an effective way to extract meaningful information from
complex biological datasets. By identifying terms that are significantly overrepresented in a gene set, researchers can
uncover biological features shared by genes. In addition to extracting enriched terms, it is also important to visualize
the results in a way that is conducive to biological interpretation.

Results: Here we present FunSet, a new web server to perform and visualize enrichment analysis. The web server
identifies Gene Ontology terms that are statistically overrepresented in a target set with respect to a background set.
The enriched terms are displayed in a 2D plot that captures the semantic similarity between terms, with the option to
cluster terms via spectral clustering and identify a representative term for each cluster. FunSet can be used
interactively or programmatically, and allows users to download the enrichment results both in tabular form and in
graphical form as SVG files or in data format as JSON or csv. To enhance reproducibility of the analyses, users have
access to historical data for the ontology and the annotations. The source code for the standalone program and the
web server are made available with an open-source license.

Keywords: Gene Ontology, Web Tools, Functional Enrichment

Background
Gene Ontology (GO) [1] enrichment analysis represents
an effective way to tame the complexity of biological
datasets and to facilitate their interpretation. The underly-
ing idea is to identify sets of GO terms that are statistically
overrepresented in a gene set of interest (e.g., a set of dif-
ferentially expressed genes in an RNA-seq experiment or
a set of genes associated with a trait in a genome-wide
association study).
In order for GO enrichment analysis to be of value to

biologists and biomedical researchers, it is important to
have access to tools that allow users to perform the anal-
ysis and effectively display and interact with the results.
Reproducibility of the results is another critical require-
ment inGO enrichment analysis, as it has been shown that
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the GO controlled vocabulary is significantly changing
over time, in ways that affect the results of the analyses [2].
Here we present FunSet, a new web server for perform-

ing GO enrichment analysis on gene sets and interactively
displaying the results. The tool allows users to optionally
cluster the results using a spectral clustering algorithm
and to extract representative terms for each cluster. In
addition to these features, FunSet enables users to choose
previous versions of the GO vocabulary and correspond-
ing annotations. The goal of this “time machine” feature is
to foster reproducibility of GO analyses, which – as men-
tioned above – have been shown to be sensitive to the
version of the ontology and annotation used [2]. A com-
parison of FunSet with existing GO enrichment analysis
tools is shown in Table 1.
FunSet can be used programmatically with an API or

from the command line. The source code for the entire
pipeline (including the web server) is made available with
an open source license.
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Table 1 Gene Ontology Enrichment Analysis tools

Tools Standalone Open Source Hist. data Enrichment calc. Background Set Clusters Interactive Plots

DAVID [3] Windows XP/2K No Limited Yes Yes Yes No

REVIGO [4] No No No No NA Yes Yes

WebGestalt [5] No No No Yes Yes No No

Babelomics 5 [6] No No No Yes Yes No No

PantherDB [7] No No No Yes Yes No Yes

GORILLA [8] No No No Yes Yes No No

FunSet Yes Yes Yes Yes Yes Yes Yes

The table compares the main features of GO enrichment web servers, including: (1) availability of a standalone tool; (2) availability of the web server source code as open
source software; (3) option to choose historical GO data; (4) enrichment analysis calculations; (5) option to define a custom background set; (4) clustering of the terms; (5)
interactive visualization

In summary, the contribution of FunSet are: (1) “time
machine” feature that allows users to use GO histori-
cal data for reproducibility; (2) interactive visualization
with clustering of terms and automatic identification of an
optimal number of clusters and representative terms; (3)
availability of the source code for both the command line
programs and the web interface, enabling users to extend
the pipeline or incorporate it into other existing pipelines.
A description of the implementation follows.

Methodology and implementation
In order to perform GO enrichment analysis, FunSet
requires users to specify: (1) an organism; (2) a target
set; (3) a background set (optional); (4) an FDR threshold
for multiple hypothesis correction; (5) the GO names-
pace (one of “biological process”, “molecular function”,
or “cellular component”); and (6) an ontology/annotation
version.

Input data
Organisms
FunSet currently supports the following organisms, which
can be selected from a pull-down menu: Homo sapiens
(human), Gallus gallus (chicken), Bos taurus (cow), Canis
familiaris (dog), Mus musculus (mouse), Rattus norvegi-
cus (rat), Caenorhabditis elegans (nematode), Arabidopsis
thaliana (thale cress), Drosophila melanogaster (fruit fly),
Saccharomyces cerevisiae (budding yeast), andDanio rerio
(zebrafish).

Gene sets
Enrichment analysis requires a target set (i.e., genes with
a property of interest) and a background set. The user
is required to enter the target set either as a comma-
separated list in a text box or by uploading a text file.
Optionally, the user can also upload a background gene
set. Otherwise, by default FunSet will select as back-
ground all annotated genes for the chosen organism. The
accepted format for specifying genes is HGNC symbols
[9] for human, VGNC symbols [9] for cow and dog, and

MOD (model organism databases) symbols [10] for model
organisms.

FDR threshold
FunSet handles multiple comparisons using the
Benjamini-Hochberg procedure [11]. The user has the
option to enter a specific False Discovery Rate (FDR)
threshold to filter the results; otherwise, FunSet uses the
default threshold of 0.05.

Ontology version
In order to facilitate the reproducibility of published
results, FunSet allows the user to select historical versions of
the GO controlled vocabulary and organism annotations.

Enrichment analysis
The per-term enrichment analysis is performed using
the hypergeometric distribution, which models sampling
without replacement:

P(X ≥ k) =
min(K ,n)∑

x=k

(K
x
)(N−K

n−x
)

(N
n
) (1)

where P(X ≥ k) is the probability of observing at least
k genes with a given GO term, N is the total number of
genes in the background set, K is the total number of
genes annotated with the given term, n is the total num-
ber of genes in the target set, and x is the total number of
genes in the target set annotated with the given term.

Clustering of terms
FunSet can also perform clustering of significantly
enriched terms, in order to identify semantically similar
groups of terms. The first step involves computing the
semantic similarity between all pairs of enriched terms
using the Aggregate Information Content (AIC) [12], an
index that takes into consideration the information con-
tent of all ancestral terms of a GO term in the graph. The
AIC index has been shown to perform better than other
widely used measures of semantic similarity [12].
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In the command line version of the program the user
can also choose to use the Lin Index [13]. The Lin Index
ranges from 0 (semantically unrelated terms) to 1 (seman-
tically identical terms), and is computed as follows:

Lin(t1, t2) = 2 × IC(c)
(IC(t1) + IC(t2))

(2)

where c ∈ S and S is the set of Lowest Common Ancestors
(LCAs) of the two terms with the maximum Information
Content (IC). The IC of a term ti is calculated as:

IC(ti) = − log(pti) (3)

where pti is the probability of the term ti, calculated as
the number of genes annotated with ti or with an ancestor
term of ti divided by the total number of annotated genes.
A matrix containing the pairwise semantic similarity

between all enriched terms is then created and used
to cluster the terms with the spectral cluster algorithm
implemented in the scikit-learn [14] Python package,
using default parameters and the desired number of clus-
ters provided by the user. If the user does not specify a
desired number of clusters, FunSet will estimate an opti-
mal number using the eigengap strategy proposed by von
Luxburg [15].
Finally, FunSet selects the medoids of each cluster,

i.e., the terms with the largest average semantic simi-
larity with respect to all terms in the cluster, as cluster
representatives.

JavaScript Object Notation Application Programming
Interface (JSONAPI)
FunSet is, at its core, a RESTful web service that meets the
JSONAPI standard [16]. JSONAPI is a prescriptive format
and protocol that sits on top of HTTP and promotes well-
defined multi-platform interoperability by eliminating the
need for ad-hoc code to be defined on a per-application
basis. FunSet uses JSONAPI as a means to execute an
analysis pipeline, translate the analysis data into a web-
serialized format, and to pipe it to a frontend web visu-
alization interface, described below in a later section. In
addition, the FunSet web service also exposes its underly-
ing capabilities publically, allowing users to programmat-
ically invoke the enrichment and clustering process and
receive results as raw JSON.

API endpoints
The FunSet API is organized around a set of API end-
points that can be invoked programmatically using a REST
client, such as POSTMAN [17], using any http command
line tool, such as CURL [18], or via the web using the visu-
alization client application. The endpoints it provides are
documented below. Each endpoint accepts HTTP GET
and/or POST requests. Endpoint documentation below
uses the following notational syntax:

HTTPMETHOD path (/< id>) (? optional_

parameter (& optional_parameter)*)*
{ (parameter_key: value_type)*}

(encoding_type)

where the parenthetical, (), denotes a pattern that occurs
0-1 times, the wildcard parenthetical notation, ()∗, indi-
cates the pattern occurs 0 or more times, httpmethod
is either GET or POST, path is a relative url from
root (e.g. funset.uno/path) that idenfies the correspond-
ing API endpoint, < id > is the unique id of the
object (where applicable), an optional_parameter is a
url-encoded parameter the endpoint optionally accepts,
(parameter_key : value_type)∗ is a list of required param-
eters (e.g. POST parameters) that, where applicable, are
encoded following the encoding_type. All API endpoints
are accessible without login to faciliate open-access.

POST /runs/invoke

{

genes: [’target_gene1’,

’target_gene2’, ...],

background: [’background_gene1’,

’background_gene2’, ...],

p-value: float,

clusters: int,

organism: string

} (application/x-www-form-urlencoded)

The runs/invoke method is the primary endpoint on
the API and facilitates the creation of a new run object,
following the schema defined below, in a JSON format.
Broadly speaking, a run is an object that encapsulates the
results of an instantiation of the enrichment and spec-
tral clustering algorithm. In this way, run contains the
results of execution as a set of enriched terms, each of
which is represented as an enrichment object, following
the schema below. The runs/invoke endpoint will pro-
duce well defined output enrichments when the POST
parameters take on any of the following values:

• all gene strings in the genes list are valid GO gene ids;
• all gene strings in the background list are valid GO

gene ids;
• the p-value, representing the false detection rate to

use for the run is a float between 0 and 1;
• the clusters parameter is an integer from 1 to the

total number of target genes supplied, representing
the desired number of clusters to use in the spectral
clustering algorithm, or -1 for automatic detection of
the optimal number; and

• the organism parameter is one of the following
3-letter codes: [’hsa’, ’gga’, ’bta’, ’cfa’, ’mmu’, ’rno’,
’cel’, ’ath’, ’dme’, ’sce’, ’eco’, or ’dre’]
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To retrieve the data for each of the enriched terms, one
should make an additional request to the GET /enrich-
ments endpoint defined below, for each enriched term id
listed in the run.enrichments field.

GET /runs/< id>

returns a previously completed run object specificed by
the < id > or a 404 Not Found error, if the < id > does
not point to a valid run object.

GET /enrichments/< id>?include=term,

term.parents,genes

returns an enrichment term’s data, whose primary key
is < id >, corresponding to the enrichment schema
below or a 404 if the term specified by the does not exist.
If passed the include parameter with term, term.parents,
and/or genes, the method will also fetch and return all
related term and gene fields, see term and gene schemas,
respectively, below.

GET /runs/< id>/recluster?clusters=

< num_clusters>

re-runs the spectral clustering algorithm for an existing
run specified by < id >, grouping terms into a number
of clusters equal to num_clusters as specified by the url
encoded parameter clusters, where num_clusters must be
a number between 1 and the total number of terms in the
background set. This method returns a run object with
the same structure as /runs/invoke, or returns 404 Not
Found if the run specified by the < id > is not an extant
valid run.

GET /terms/< id>

returns GO term data, following the term schema below,
for the term matching the < id >, or a 404 Not Found
error if the term does not exist.

GET /genes/< id>

returns gene data, matching the gene schema below, for
the gene specified by the< id >, or a 404 Not Found error
if the id is invalid.
Gene

• id (int)
• name (string)

Table 2 shows Funset’s API data schema.

Visualization Techniques
To visualize the results of the GO enrichment analy-
sis, we built a client-side front-end as a web applica-
tion using Ember.js [19, 20] and D3.js [21]. The web
application allows users to specify a target gene set, a

background gene set, p-value and an ontology, names-
pace, and organism to be used for enrichment analysis.
Given the user selections, the web application invokes the
runs/invoke API described above, mapping the user selec-
tions in the interface to the input parameters as specified.
The JSON results returned by the API are then rendered
into an SVG visualization. The FunSet visualization rep-
resents terms in a 2D coordinate space, where terms are
positioned using Multidimensional Scaling (MDS) on the
distance matrix obtained from the pairwise AIC semantic
similarity index described before. A term’s x,y coordi-
nate location in the svg is characterized by the following
formula.

(x, y) = (svgw ∗ scx, svgh ∗ scy) (4)

where svgw and svgh are, respectively, the pixel width and
height of the svg as it fits in the user’s browser and scx
and scy are, respectively, the spectral clustering x and y
results, ranging from 0 to 1. In effect, this scales the SVG
to the user’s browser size, while maintaining the original,
location significant, aspect ratio. Node size in the visual-
ization graph is scaled according to the enrichment size
effect produced by the enrichment analysis. The enrich-
ment size for a term is calculated as the number of genes
associated with a term in the target set divided by the
expected number of genes.
After setting initial term locations to be the scaled

clustering location, FunSet’s visualization interface then
applies a velocity Verlet using D3’s force library [22] to
each term to distribute terms away from one another, uni-
formly, within the SVG space. This technique is used to
mitigate scenarios where terms are tightly stacked within
a cluster - making visual interpretation difficult. The Ver-
let numerical integrator used in FunSet simulates physical
motion of terms in the SVG by applying a constant accel-
eration a over a time interval �t to the term’s velocity,
changing its (x,y) position at each time step. With veloc-
ity initially set to 0, this accelerates terms in the graph
by adding a to the term’s velocity at each time step. To
disperse terms, without disrupting the underlying clus-
ter structure, we apply a uniform repulsive force to each
term that simulates magnetic repulsion. At the same time,
a link-force is applied for terms with parent/child rela-
tionships in the data. Finally, a decay function simulating
physical friction stabilizes the graph and allows it to reach
a steady state. The entire physics simulation is compute
optimized to perform well even for large networks of
enriched terms.
FunSet auto-expands the cluster and term panels and

then jumps to the enriched term’s reference material on
the right-hand side when a user clicks a node to inspect it
further. GO terms are linked to Amigo [23] so that users
can jump directly to the external GO term reference page.
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Table 2 API Data Schema

Run Enrichment Term

id (int) id (int) id (int)

created (date) created (date) name (string)

ip (string, requestor’s IP) term (id (int), defining a ForeignKey to
Term)

termid (string, official GO id)

pvalue (float - detection rate in sample)

enrichments (list of id
(int), defining a one-to-
many relationship to
Enrichment)

level (float - enrichment level in sample) namespace (string)

semanticdissimilarityx (float - x position of
term in graph scaled to [0-1])

description (string)

semanticdissimilarityy (float - y position of
term in graph scaled to [0-1])

synonym (string)

cluster (int - the cluster to which the
enriched term is assigned)

parents (list of id (int), defining a many-to-many relationship
to Term)

medoid (boolean - true if this term is the
medoid of its cluster)

genes (list of id (int), defining a one-to-
many relationship to Gene that represents
all genes enriched in the sample)

The boldface items represent the data field names (i.e., the fields in the schema)

Results
Running the GO enrichment analysis and visualizing the
results
Figure 1 shows an overview of the FunSet visualization
user interface. The SVG space with the clusters of terms
is shown on the left. This area is pannable and zoomable

by left clicking and dragging or using the mouse wheel,
respectively. The right hand side of the interface shows
information about the computed enrichment analysis,
including the time when the run was created, which is
clickable to copy a permanent link that the user can use to
return to this run data, the total number of terms within

Fig. 1 FunSet’s User Interface. The figure shows the results of GO enrichment analysis, with the network view of the terms on the left and the
toggeable clusters/terms panel on the right
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the ontology data used, the total terms that were found
to be enriched, and then the set of clusters the enriched
terms fell into. The interface allows the user to change the
number of desired clusters using the right hand slider. The
interface also allows the user to show or hide clusters by
toggling the cluster visibility buttons.
Clicking a cluster will expand it to show the enriched

terms with their associated data such as the false discov-
ery rate FDR and the enrichment size ES. The term panel
allows users to click a particular term to highlight it, in
red, in the SVG graph. Clicking a term in this panel will
also display the term’s description. A second panel (not
shown in the figure) shows the specific genes contributing
to the enrichment for each cluster.
The visualization UI also allows the user to export the

results of a run as an SVG, as JSON, and as a CSV. Both
the JSON and CSV data structures follow a hierarchical
format consistent with the API description. The interface
also allows a user to export JSON data regarding a partic-
ular cluster. The interface also allows users to click nodes
in the graph to expand their term information within a
cluster.

Case study: comparing enrichment analysis results across
time
A study by Wadi et al. showed that outdated enrichment
tools could only recover 26% of biological processes and
pathways identified with more up-to-date resources [2].
As a proof-of-principle, we used FunSet to perform GO
enrichment analysis in the “biological process” namespace
on a list of predicted cancer “driver” genes [24] using 2013
and 2018 GO vocabulary and annotations, respectively.

Fig. 2 Comparison of GO enrichment analysis performed at different
time points. The Venn diagram shows the overlap between
significantly enriched terms (FDR < 0.05)

The results show a substantial difference in the number of
enriched terms, with 364 gained terms with respect to the
2013 version, and 64 “lost” terms (Fig. 2).
We used the same list of genes to highlight how

clustering can help to summarize long list of enriched
terms. As shown in Fig. 3, FunSet automatically identified
twelve clusters of terms, and returned the representative
(medoid) term for each cluster. The representative terms
are shown in Table 3.

Discussion
Enrichment analysis is a widely used bioinformatics
approach that enables experimental and computational
investigators to extract meaningful information from long
lists of genes. Here we introduced FunSet, a new web
server for performing and visualizing GO enrichment
analysis interactively through a web server, programmat-
ically via an API, or from the command line. We also
discussed a case study that illustrates the impact of time
(and therefore different versions of the GO vocabulary
and annotations) on the results of otherwise identical
enrichment analyses. This points to the importance of
using time-stamped versions of the GO vocabulary and
corresponding annotations when attempting to reproduce
computational analyses. To the best of our knowledge,
this is the first time that a comprehensive tool for GO
enrichment analysis and visualization allows users to use
historical GO data. The case study also illustrates the use
of clustering to identify meaningful groups of terms that
can be summarized with one representative term per clus-
ter, automatically chosen by FunSet. We note that while
FunSet can determine an optimal number of clusters with
the eigengap procedure [15], users still have the option
(and are encouraged) to explore with different number
of clusters, to identify groups of terms that match their
biological intuition at the desired granularity level.

Conclusions
We have introduced a novel tool named FunSet to per-
form and visualize GO enrichment analysis. By having
access to the full documented source code of the pipeline,
users can deploy FunSet on a private cloud for increased
computational performance, and potentially customize it
using other controlled vocabularies. Further, the availabil-
ity of a documented, open-source standalone program
allows users to incorporate FunSet into other bioinformat-
ics pipelines or extend its features.

Availability and requirements
Project name: FunSet
Project home page: http://funset.uno
Operating system(s): Platform independent (web server);
Linux, Mac OS X (command-line software)
Programming language: Python, C++, JavaScript

http://funset.uno
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Fig. 3 Clustering of enriched tems. The list of predicted cancer driver genes in [24] yields 630 enriched GO terms in the biological process
namespace using 2018 GO data. Funset automatically identified 12 representative clusters using the eigengap approach [15]

Table 3 Representative terms (medoid terms) in the biological process namespace automatically identified by FunSet for the
gene list reported in [24]

ClusterID GO ID GO Term # of Terms # of Genes

0 GO:0010665 Regulation of cardiac muscle cell apoptotic process 80 31

1 GO:0016242 Negative regulation of macroautophagy 76 25

2 GO:1905114 Cell surface receptor signal. pathway involved in cell-cell signal. 20 19

3 GO:0018209 Peptidyl-serine modification 35 22

4 GO:0065003 Macromolecular complex assembly 33 27

5 GO:0048568 Embryonic organ development 43 23

6 GO:0043170 Macromolecule metabolic process 75 34

7 GO:0042330 Taxis 66 33

8 GO:0048666 Neuron development 40 19

9 GO:0002758 Innate immune response-activating signal transduction 48 31

10 GO:0031327 Negative regulation of cellular biosynthetic process 52 21

11 GO:0030423 Targeting of mRNA for destruction involved in RNA interf. 62 34

The full list of enriched terms contains 630 terms using the 2018 GO release
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Other requirements: none
License: GPL-3
Any restrictions to use by non-academics: none

Abbreviations
FDR: False discovery rate; GO: Gene ontology; IC: Information content; LCA:
Lowest common ancestor
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