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Experimental and computational studies have revealed that T-cell cross-reactivity is a

widespread phenomenon that can either be advantageous or detrimental to the host.

In particular, detrimental effects can occur whenever the clonal dominance of memory

cells is not justified by their infection-clearing capacity. Using an agent-based model

of the immune system, we recently predicted the “memory anti-naïve” phenomenon,

which occurs when the secondary challenge is similar but not identical to the primary

stimulation. In this case, the pre-existingmemory cells formed during the primary infection

may be rapidly deployed in spite of their low affinity and can actually prevent a potentially

higher affinity naïve response from emerging, resulting in impaired viral clearance. This

finding allowed us to propose a mechanistic explanation for the concept of “antigenic

sin” originally described in the context of the humoral response. However, the fact

that antigenic sin is a relatively rare occurrence suggests the existence of evolutionary

mechanisms that can mitigate the effect of the memory anti-naïve phenomenon. In

this study we use computer modeling to further elucidate clonal dominance and the

memory anti-naïve phenomenon, and to investigate a possible mitigating factor called

attrition. Attrition has been described in the experimental and computational literature

as a combination of competition for space and apoptosis of lymphocytes via type-I

interferon in the early stages of a viral infection. This study systematically explores

the relationship between clonal dominance and the mechanism of attrition. Our results

suggest that attrition can indeed mitigate the memory anti-naïve effect by enabling the

emergence of a diverse, higher affinity naïve response against the secondary challenge.

In conclusion, modeling attrition allows us to shed light on the nature of clonal interaction

and dominance.

Keywords: computer modeling, IMMSIM, memory-anti-naïve, attrition, CD8+ response

INTRODUCTION

Immunological memory, which appeared in the adaptive immune system roughly 600
million years ago, resulted in a substantial evolutionary advantage for vertebrates, whose
immune systems acquired the ability to “remember” infectious agents and rapidly
deploy effector cells in subsequent encounters with the same microorganisms or viruses.
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However, the tendency of many infectious agents to mutate can
reduce the efficacy of memory cells, whose affinity for mutated
antigens can drastically decrease. Therefore, between the two
extremes of the homologous challenge (with identical primary
and secondary infections) and independent primary responses
against two unrelated infectious agents, there exists a wide
range of responses where the host has partial immunity against
the new infection. Interestingly, partial immunity can exist not
only between different strains of the same microorganism or
virus, but also between apparently unrelated viruses, as shown
by the pioneering work of Selin and Welsh in the field called
heterologous immunity (1).

Cross-reactive immune responses against different viruses
are believed to be ubiquitous, and can have beneficial, neutral,
or detrimental effects for the host, in ways that are not
easy to predict. Detrimental effects of partial immunity were
described by Fazekas de St. Groth in 1966, when highest
lethality rates were found among patients with a history
of past encounters with far cross-reactive infectious agents.
This phenomenon was studied in the humoral branch of the
adaptive immune system and was labeled “original antigenic
sin” (2). When cross-reactivity is too weak to cure the
infection, the thwarting of naïve responses by memory is still
blocking the development of the primary response, adding
failure to failure: failure to cure and failing blocking the
default defense.

The patterns of viral mutations and cross-reactive
interactions are difficult to trace and define in vivo, making
computational modeling highly beneficial. In a previous study
we systematically studied the effect of a stepwise increase
of the distance between two antigens subsequently injected
in an in silico model (3). Unexpectedly, we identified an
intermediate range of priming-challenge antigenic distances
where memory is unable to mount an efficient defense, but
it still outcompetes the primary response. Further in silico
experimentation corroborated our first studies proving that
the mechanism of memory anti-naïve (MaN) is fueled by
the specific competition for antigen (4). Competition for
antigen plays a key role in allowing high affinity clones to
emerge in an immune response. However, memory has a
faster dynamic than a primary response. In the early phases
of an infection—while the primary response is still not ready
to engage—the quantity of available antigen is growing but
still limited. Thus, low affinity memory cells can potentially
outcompete naïve cells, resulting in an immune response of
lower quality.

Recently, Welsh et al. described a mitigating phenomenon
named attrition, which is triggered by competition for space
among clones of immunocytes at the time of antigen contact in
a lymph node (5). Attrition is driven by short-distance effect of
IFN-β that induces apoptosis on cytotoxic T-cells (Tc) by contact.
The net effect is to reduce the growing lymphoid Tc population,
and thus to favor the fittest cell lines in terms of affinity against
the invader. The present in silico study is focused on modeling
the mechanism of attrition and measuring its effects on the speed
and on the affinity of the secondary response while systematically
varying the degree of cross-reactivity.

BACKGROUND

Nature and Role of Computational Models
The biology of the immune response has been studied intensively
in the few decades before and after the turn of the century and we
witnessed an extraordinary growth in the number of researchers
worldwide. As a result, we witnessed an exponential increase in
the data being generated, resulting in the need for computational
models to help make sense of it.

Computational modeling of the immune system experienced
a strong burst in the 1980s, when several interdisciplinary
collaborations brought together immunologists and
mathematicians of various shades. These collaborations
were fostered by two breakthrough events in the theoretical
immunology community that had been engaged in adaptive
immunology for some decades: the first solved the genetic
problem of immune diversity (6); the second explained the
formation of synapses between lymphocytes, allowing cell
cooperation in most actions of the immune system (7). These
achievements increased the size and the complexity of the field.
At the same time, they created space for computational modeling.

Agent-based modeling is a relatively novel paradigm of
modeling that satisfies the requirements of simplicity and
parsimony in the description of a phenomenon by emphasizing
first principles. It is a general modeling paradigm for complex
systems inspired by von Neumann’s “cellular automata” (8).
Agent-based models consist of discrete dimensional space and
time scales, where agents are, in our case, the relevant cells
(or molecules) equipped with virtual receptors and capabilities,
which reflect experimental observations.

The computational model C-IMMSIM, as well as the
pioneering IMMSIM (9, 10), has been conceived to allow the
dynamic representation of hypotheses and their preliminary in
silico testing. These may further elicit ideas and new hypotheses
to be eventually tested in vivo. In several applications over recent
years, the model has generated emergent, sometimes surprising,
data that shed light on the mechanisms and interactions of
the model itself and on their counterparts in the biological
immune system. For example, during the simulation of the
affinity maturation of the humoral response, the varying density
of cells and availability of antigen were shown to cause the
shift from the bottleneck of the primary response, obtaining the
help of CD4+ cells, to the secondary bottleneck, winning the
competition for antigen (11).

The model offers the possibility to manipulate the elements
of virtual runs like experimental biologists do, by using the
computational equivalent of knock-out mice or cell transfer (4,
12). Stratagems of this kind were applied in parallel experiments
comparing the response of the humoral branch only, the cellular
branch only, and both branches, to relate the efficiency of
responses to different viral features (13). In a study about cross-
reactive memory, the silencing of one or the other of two

suspected kinds of attrition, active or passive, revealed interesting
cooperative effects of the combined mechanisms (1). In another

study, selective “freezing” of humoral cross-reactive responses

was obtained by increasing the bit distance in epitopes but not
in peptides, while the antibody lifetime was artificially shortened
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or extended over a 50-fold range in order to reveal antibody-
mediated competition against cellular responses (3).

MATERIALS AND METHODS

The Computational Model
Polyclonality
In the present computational model, the specific recognition
in adaptive immunity is simulated by borrowing ideas from
binary calculus (14). Epitopes and paratopes are represented by
strings of zeros and ones. When an epitope meets a paratope
the strings are checked for complementarity at each position
and a match (or equivalently a mismatch) is scored. Thus, the
match is a number between 0 and N where N is the length
of the binary strings representing the two binding regions. The
model is polyclonal since it equips cells and molecules (e.g.,
lymphocytes receptors, B-cell receptors, T-cell receptors, Major
Histocompatibility Complexes (MHC), antigen peptides and
epitopes, immuno-complexes, etc.) with specific bit strings to
represent the “binding site.”

This minimalistic definition allows a diversity of 2N for each
immunocyte (CD4+ or Th, CD8+ or TC, B). Such a setup
can model cross-reactivity with remarkable smoothness, and
accuracy in predicting the effect of competition among cross
reactive cells.

Binding Affinity
In vivo, the paratope-epitope attraction is the sum of weak
electrostatic and hydrophobic interactions when juxtaposed. In
the simulation, two entities interact with a probability that is a
function of the Hamming distance between the binary strings
representing the entities’ binding site. We indicate with m =
∥

∥r, p
∥

∥ ∈ {0 . . .N} the distance or the match between r, p ∈

{0 . . . 2N − 1}. A good and widely used analogy is the matching
between a lock and its key. If more than a threshold value mc

over N bits matches (i.e., 0–1 or 1–0) occur, the interaction
is allowed with a certain probability that is a function of the
number of matches between the bit-strings. This attraction force
(called affinity or affinity potential) is equal to one when all
corresponding bits are complementary. Specifically, ifm =

∥

∥r, p
∥

∥

is the Hamming distance between the two strings r and p, the
affinity potential f (m) ∈ [0, 1] defined in the range 0, ...,N is

f (m) = f
(∥

∥r, p
∥

∥

)

=

{

elog(AL)
m−N
mc−N mc ≤ m ≤ N

0 m < mc
(1)

where AL is a free parameter which determines the slope of the
function, whereas mc ∈ {N/2 . . .N} is the cut-off (or threshold)
value below which no binding is allowed.

Humoral and Cellular Responses
The model simulates a very simple form of innate immunity and
an elaborate form of adaptive immunity (including both humoral
and cytotoxic immune responses).

In the case of innate immune response by “exogenous signal”
(e.g., Pathogen-Associated Molecular Pattern, PAMP or PAMP-
agonist, used for specific adjuvants) the activation sequence

will begin with antigen presenting cells stimulation. The only
mechanisms of this kind which is embedded in the model
accounts for the presence of lipopolysaccharides in pathogens as
in Gram-negative bacteria.

Working Assumptions
In the model, a single human lymph node (or a portion of it) is
mapped onto a three-dimensional Cartesian lattice. The primary
lymphoid organs thymus and bone marrow are modeled apart:
the thymus (15, 16) is implicitly represented by the positive
and negative selection of immature thymocytes before they
enter the lymphatic system, while the bone marrow generates
already mature B lymphocytes. Hence, only immunocompetent
lymphocytes are modeled on the lattice.

The C-IMMSIM model incorporates several working
assumptions or theories, most of which are regarded as
established immunological mechanisms, including: (i) the
clonal selection theory of Burnet (17); (ii) the clonal deletion
theory (i.e., thymus education of T lymphocytes) (18); (iii) the
hypermutation of antibodies (19); (iv) the replicative senescence
of T-cells, or the Hayflick limit (i.e., a limit on the number of
cell divisions) (20); (v) T-cell anergy (21) and Ag-dose induced
tolerance in B-cells (22); (vi) the danger theory (23); (vii) the
idiotypic network theory (24). Variations on the basic model
have been used to simulate different phenomena ranging from
viral infection [e.g., Human Immunodeficiency Virus (25) or
Epstein-Barr Virus (26)] to cancer immunoprevention and type
I hypersensitivity (27, 28).

Each time step of the simulation corresponds to 8 h.
The interactions among the cells determine their functional
behavior. Interactions are coded as probabilistic rules defining
the transition of each cell entity from one state to another.
Each interaction requires cell entities to be in a specific state
choosing from a set of possible states (e.g., naïve, active, resting,
duplicating) that is dependent on the cell type. Once this
condition is fulfilled, the interaction probability is the effective
level of binding between ligand and receptor.

Unlike many other immunological models, the present
one not only simulates the cellular level of the inter-cellular
interactions but also the intra-cellular processes of antigen uptake
and presentation. Both the cytosolic and endocytic pathways are
modeled. In the model, endogenous antigen is fragmented and
combined with MHC class I molecules for presentation on the
cell surface to CTLs’ receptors, whereas the exogenous antigen
is degraded into smaller parts (i.e., peptides), which are then
bound to MHC class II molecules for presentation to the T
helpers’ receptors.

Stochasticity
The stochastic execution of the algorithmic rules, as in a Monte
Carlo method, produces a logical causal/effect sequence of
events culminating in the immune response and development
of immunological memory. The starting point of this series of
events is the injection of antigen (the priming). This may take
place any time after the simulation starts. In general, the system
is designed to maintain a steady state of the global population of
cells if no infection is applied (homeostasis). Initially the system
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is “naïve” in the sense that there are neither T and B memory
cells nor plasma cells and antibodies. The various steps of the
simulated immune response depend on what is injected, i.e., virus
or bacteria.

The Virus
Virus is the “foreign agent” in the model. It is constructed with
B-cell epitopes and T-cell peptides. In addition, it replicates,
simulating a living entity, and the combination of three factors
(speed of duplication, infectivity, and lethal load level) results in
its “fitness” which is independent of antigenicity. Any infection
begins with the penetration of virus into an epithelial cell, though
this could be any designated target cell. Whether the infection
is cured or becomes persistent or even kills the virtual mouse
depends on the virus dose, its fitness, and the strength of the
immune response it has elicited. All these variables determine
whether—and to what degree—the immune system’s success
requires the cooperation of both the cellular and humoral branch,
as has been shown in several simulation studies (13).

Modeling Active Attrition
Active attrition is enacted in the present version of the model by
describing the release of IFN-β by macrophages in the presence
of high concentrations of danger signals, e.g., in infection sites.
This lymphokine diffuses locally and then “causes” the death
of cytotoxic memory T-cells by contact. The locally-limited
bystander effect of this cytokine is set to be dependent on the
cell’s age but also on its affinity to the viral peptide. Specifically,
the death of cytotoxic cells is modeled as a stochastic event
whose probability is proportional to the cell’s age and inversely
proportional to the affinity between TCR and the peptide
attached to class 1 HLA (1, 5) of infected cells, i.e.,

Pr
[

die
]

=
an1

an1 + k1
×

in2

in2 + k2
×

(

1− f
)

(2)

where a is the age of the T-cell (in units of days), f the affinity
of its TCR to the viral peptide as defined in Equation (1) and i is
the local concentration of IFN-β (in pg/ml). In the experimental
setup that we are going to describe in the following section, the
parameters of Equation (2) have been chosen as follows: k1 =

106 × days−1 and k2 = 109 × (pg/ml)−1 were taken to obtain
a probability of killing which was much stronger for memory
compared to naïve cells; parameter n1 = 3 > n2 = 2 were
chosen to make age the limiting factor in the killing. The last
term in Equation (2),

(

1− f
)

∈ [0, 1], stands for a protective
factor for cells able to establish a stronger immunological synapse
during peptide recognition on themembrane of infected cells and
f therefore is the same function in Equation (1).

Experimental Setup
The model represents both paratopes and epitopes by N =

16 bit binary strings. A successful paratope-epitope interaction
is limited to a match m greater than or equal to the cut off
mc = 13 over the 16 allowed. This setup results in a diversity
of 216 for each lymphocyte and gives N − mc = 4 matching
classes thus allowing to model the immune recognition and
predicting the effect of competition among cross-reactive cells

with reasonable accuracy. In vivo, the diversity among epitopes
and that among paratope are mind boggling (conservatively, 1010

to 1012). Simulating those numbers, though theoretically possible
by enlarging the repertoires which is obtained by elongating the
strings, is practically not viable for computational reasons.

The Antigenic Distance Experiments
In studying memory, it is important to quantify the degree
of cross-reactivity between related antigens. While in vivo this
appraisal is difficult to attain, the following modeling setup
allows us to measure the effect of cross-reactivity on a secondary
immune response quite effectively.

The series of simulations we performmimic a prime/challenge
experiment in a virtual mouse (or individual) where successive
injections carry equal or different antigenic determinants (see
Supplementary Figure 2). The priming infection is performed
always with the same virus, but the challenge or secondary
infection performed later is done with a different virus whose
peptide is at a defined distance d from the priming one. We use
N/2 = 8 bits to represent a virus peptide thus we have d = 0 . . . 8
levels of cross-reaction by suitably choosing the prime/challenge
couple. Viral peptides are presented to T-cell receptors bound
to the major histocompatibility complex molecule (MHC) and
indeed in the model the match is an N-bit match. However, for
simplicity, the contribution to the affinity given by the portion of
the cell receptor binding the portion of the MHC molecule is set
to a constant value so not to influence the overall match to the
virus. In other words, the affinity between receptors and MHC-
bearing virus peptides depends only on a N/2 = 8 bit match
rather than an N bit match.

Let’s call VI the virus injected first (i.e., the primer at time tI),
VII the virus injected subsequently (the challenger at time tII) and
d the “bit distance” between VI and VII , that is, d =

∥

∥VI ,VII
∥

∥.
The experiments realize the protocol consisting in a priming
injection that is always performed with the same virus VI = V0

and a challenge injection consisting of a certain saturating dose
of one of the nine viruses reported in Table 1 which also includes
V0. Therefore VII = Vk for k = 0 . . . 8. Note that the set of
chosen viral peptides is such that d =

∥

∥Vi,Vj

∥

∥ =
∣

∣i− j
∣

∣, for
all choices of i, j ∈ {0 . . . 8}. Following this description, it is
convenient to name the experiments on the basis of the distance
between priming with V0 and challenge with Vk. For instance,
we call d = 3 the experiment in which VI = V0 and VII =

V3 because d =
∥

∥VI,VII
∥

∥ = ‖V0,V3‖ = 3. While d = 0
realizes the homologous response, and can indeed be considered
the control, d = 1 to d = 6 represent cases of cross-reactivity,
with progressively fewer matches. Finally, d = 7 and d = 8 are
heterologous responses (i.e., nomatch at all).We note that all viral
peptides are chosen to be distant with respect to self-peptides,
to avoid having to deal with autoimmune responses, which are
outside the scope of this work.

The simulated space is equivalent to a fraction of the
lymphatic system represented at once. This simulated volume
is 10 micro liters or, equivalently, 10 cubic millimeters. Both
priming and challenge consist in injecting a saturating viral
dosage of 103 viral particles per microliter. For all experiments,
the setup is identical except for the two viruses injected, VI and
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TABLE 1 | Viruses used in the experiments are numbered from zero to eight.

Vk Peptide strings(pk)

V0 0000 0000

V1 0000 0001

V2 0000 0011

V3 0000 0111

V4 0000 1111

V5 0001 1111

V6 0011 1111

V7 0111 1111

V8 1111 1111

The injection protocol comprises two viruses V I and V II presented one after the other

at time steps separated by a time sufficient to fully develop an immune response. The

Hamming distance between the two viruses injected determines the level of cross-

reactivity hence the degree of exploitation of the immune memory to V I in the response

to V II. Viruses to are equipped with a peptide string of length N such that d =
∥

∥V I,V II
∥

∥ ǫ{0 . . . 8}. In the antigenic distance experimental protocol V I is always equal to V0.

VII . Thus, the simulated space is populated with the same initial
number of cells (i.e., no variability allowed), the viruses share the
same infectivity and replication rates, etc. Moreover, since the
model is stochastic, for each setup d ∈ {0 . . . 8}, we repeat the
experiments 100 times for each protocol and calculate statistics
(averages and standard deviations) afterwards.

Useful Definitions
With the aim of defining two quantities which help in
measuring the effect of cross-reactivity, we now need to introduce
some formalism.

We call diversity D the set of possible bit strings of length N
in the base-ten system, that is, D = {0...2N/2 − 1}. We indicate
by nr(t) the number of cytotoxic T-cells with specificity r ∈ D
at time t. For each virus V the Hamming distance creates the
equivalent classes in the set of cell receptors D. In other words,
two receptors r1 and r2 are in the same matching class for V if
‖r1,V‖ = ‖r2,V‖ = m. We can therefore define qm(t) as the
total number of cells matching the virus V with m bits, that is,
∀m ∈ {0 . . . N}

qm (t) =
∑

r∈D,‖r,V‖=m

nr (t).

Then we call Am(t) the affinity of the response to the peptide
of virus V relative to the matching class m ∈ {0...N}, that
is, all the lymphocytes that are equivalent in terms of affinity.
This quantity is calculated by summing the number of cells with
receptor matching with m bits the virus peptide and multiplied
by the affinity value f (m), that is, ∀m ∈ {0 . . . N}

Am (t) = f (m) · qm(t). (3)

Finally, we define the total affinity to virus V as

TA (t) =

N
∑

m=0

Am (t). (4)

Note that since we are interested in quantifying the effects
of cross-reactivity on the secondary immune response, all the
quantities qm(t), Am(t) and TA(t) should be considered relative
to VII and be written, for instance, AII

m. However, to simplify
the representation we just avoid using the superscripts and write
Am, etc.

Furthermore, we call VII (t) the number of viral particles at
time t of the challenge virus and define

tc = min
t

{

t ≥ tII :V
II (t) = 0

}

− tII

the time-to-clear the virus VII , that is, a measure of how quickly
the response eradicates the virus injected at time tII.

We can now finally define two almost complementary
measures. The first one is the efficacy of the immune response
to the second virus injected VII. The efficacy E

(

d
)

is a function
of the distance

d =
∥

∥V0,V
II
∥

∥

to the first injected virus VI = V0 and is defined as the peak
value of TA (t) for t ≥ tII divided by the time-to-clear the virus
tc. In formula

E
(

d
)

=
1

tc
·max
t≥tII

{TA (t)} . (5)

The efficacy measures how good the immune response to VII is
in terms of how many cytotoxic T-cells are developed by clone
expansion and how quickly the virus is eliminated. Clearly the
maximum value of the efficacy is achieved for d = 0 because
of the immune memory developed to respond to VI = V0,
but decreases for increased distance d between prime V0 and
challenge injection VII .

The maximum value attained by the sum of all Tc counts qm(t)
for m = 0 . . .N averaged over a number of simulations (〈·〉

indicates averages) can be designated as

〈

M̃
〉

=

〈

max
t≥tII

{

N
∑

m=0

qm(t)

}〉

. (6)

Cell counts are calculated for each antigenic distance
experiments. We can therefore use superscripts to indicate
a specific experiment and refer to this quantity in the case d = 8

as
〈

M̃
〉d=8

. This value measures the magnitude of the cytotoxic
immune response to VII = V8. Since it corresponds to the
completely heterologous response, the effect of the MaN is zero
and the quantity in Equation (6) is maximal with respect to d.
The other extreme case is found when d = 0, corresponding to a
homologous immune response for which the immune memory
is so perfectly fit to the second injected virus VII = V0 = VI that
the latter is eliminated without the need for a clonal expansion
of cytotoxic T-cells. The measure that we call compression is then
defined as

C
(

d
)

=
〈

M̃
〉d=8

−
〈

M̃
〉d

(7)
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FIGURE 1 | T-cell counts corresponding to three different but similar simulations. In panel (A) we inject two homologous viruses (i.e., cross-reacting) in succession

(i.e., at day tI = 0 and tII = 330) namely V I = V0, V
II = V2, which are therefore at a distance of 2 bits. In panel (B) we inject two heterologous viruses, V0 and V8. In

panel (C) instead, after the usual priming with V0 we challenge the system with both the homologous V2 and the heterologous V8 viruses. Cell counts shown in all

panels are representative of the most active clones of the 2N possible. These “responding clones” are specific either to just V0 (filled triangles in all panels A–C), or

specific to both V0 and V2 (i.e., cross-reacting memory clones shown in panels A,C as empty squares), or naïve independent responses specific to V8 (panels B,C,

filled squares). In panel A the primary naïve response to V0 (filled triangles) leaves memory that is then re-stimulated by V2. In panel B instead, the same primary naïve

response to V0 (filled triangles) do not cross-react to V8 and indeed fade away upon the raising of the secondary responses. (C) shows what happen when the

system is challenged with both. It shows in particular that the heterologous response to V8 (filled squares) is independent and unaffected by the cross-reacting clones

(empty squares) operating the MaN.

and is the difference of the maximum number of cytotoxic T-cell
count attainable in the absence of memory. In other words,
this measure quantifies the degree of hindrance (or reduction,
hence the name compression) of the naïve response due to the
presence of cross-reactive memory cells against past infections.
The compression is maximal for d = 0 and diminishes for larger
d reaching its minimum for d = 8.

RESULTS

The Memory Anti-naïve (MaN)
Phenomenon
We first illustrate theMaN phenomenon by studying the primary
and memory responses against viruses with different antigenic
distance. The results of three cross-reacting viral infections are
shown in panels A, B, and C of Figure 1, where we can track
the primary and memory responses of proliferating individual T-
effector memory clones. In each panel we learn the composition
of the naïve response, represented by filled markers, and of the
memory response, represented by empty markers present only
in panels A and C. Panel A shows the case of priming with
VI = V0 and challenge VII = V2, that is, a virus with antigenic

distance d = 2 that elicits a cross-reactive memory response. The
result is a strong dominance of memory over primary clones.
In fact, no new primary clone emerges after tII . Panel B has a
priming identical to that of panel A but is challenged by a virus
with d = 8 from the priming, thus a heterologous virus. As
predicted, the secondary response does not trigger memory cells,
but elicits a naïve response specific to the challenge V8. Panel
C shows the case with all three viral infections: V0 at time tI ,
producing a primary stimulation, and both V2 and V8 at time tII .
The two latter viruses are, by virtue of their antigenic distance,
not interfering with each other. Any primary anti-V2 is silenced
by cross reacting memory previously elicited against V0, while
the naïve anti-V8 mounts, as expected, an undisturbed primary
response. Taken together, these results allow us to conclude that
the force underpinning MaN is specificity, and the mechanism is
competition for antigen. Note that both panels A and C show a
clear advantage of memory over naïve: most memory clones are
higher than naïve ones at the peak.

MaN Has Two Different Effects
Another way of showing MaN is to extend the range of distances
between the priming and the secondary infection, that is,
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FIGURE 2 | Memory response clears the virus and dominates over any

primary response by its faster action. This figure shows that the domination

remains in place also when the antigenic distance d makes any cross-reactive

memory response weak. In panel (A), we show the efficacy of the immune

response E(d) (i.e., a measure of cytotoxicity in unit of cell counts) vs. the

antigenic distance d. In panel (B), the compression C(d) (i.e., the blocking

effect of the cross-reactive memory, also in unit of cell counts). The difference

of the curves indicates that for d ∈ {2 . . .5} the blocking of the primary

response is not justified by an efficient secondary response, that is the

phenomenon that constitutes the MaN. Panel (C) presents the same data of

panels (A,B) but respectively normalized by the Min-Max method (i.e.,

y′ = (y − ymin)/(ymax − ymin)) so to fall within the same range [0, 1]. It

visualizes at once the effect of MaN as the area between the two curves

assuming the shape of an “eye”.

following the antigenic distance experiment schema described
in section The Antigenic Distance Experiments. In this set of
experiments the attrition plays no role as it has been disabled,
allowing us to study the MaN in isolation.

Figure 2 shows the efficacy E(d) and the compression C(d)
defined in section Useful Definitions [respectively in Equations
(5) and (7)] as a function of the viral distance d. The figure shows
values before and after normalization. Clearly, the efficacy of the
immune response decreases by increasing d (panel A) simply
because it is a measure of the efficiency of the cross-reactive
immune memory. We can point to d = 2 as the critical value
for the greatest reduction in efficacy. On the other hand, the
compression also decreases by increasing d for the same reason,
but changes more “slowly” compared to the efficacy: the critical
value is d = 5. Based on these results, we can say that the range d
between 2 and 5 is the domain of the MaN.

The Effect of Attrition in Alleviating the
MaN
In another set of experiments, we turned the attrition on and
studied its effect on the immune response in general and
on the MaN in particular. The attrition effect was modulated
by modifying Equation (2) by multiplying the interferon
concentration by a factor α, that is, taking α × in2 , with α equal
to 1,2, . . . 5. For formal correctness, the case of no attrition
designated as α =0 needs to be made explicit in the new

definition of Pr
[

die
]

of Equation (2) as follows

Pr
[

die
]

= P(α) =
an1

an1 + k1
×

αin2

αin2 + k2
×

(

1− f
)

(8)

All runs exhibit identical primary response to d = 0 virus (green).
Analyzing the memory responses those challenged with V0 (i.e.,
d = 0 thus homologous) are the strongest while all others are
cross-reactive and expected to turn out progressively weaker with
increasing d. For d = 7 and d = 8 the viral challenging epitope
is so different from the priming epitope that memory fails to
recognize it, thus there is no cross-reactive memory and the
response is a primary response directed against the second virus
(V7 or V8). Another point that may seems counterintuitive is
to see a very weak immune response representing the fact that
when the memory is at its strongest (e.g., d = 0 and d = 1)
the virus is eliminated very efficiently. This happens because
memory is “speedy in deployment” and eliminates the growing
population of pathogens when they are still few in numbers.
This has two important effects: (i) the lack of further stimulation
keeps the effectors low, and (ii) no stimulation of naïve response
takes place. This is the same competition for antigen already
seen in Cheng et al. (3). The results in Figure 3 quantitatively
confirm these early observations and provide further insights
into the mechanisms. Either large antigenic distances or high
levels of attrition will counter the MaN effect but, as expected
for synergistic actions, smaller antigenic distances or levels of
attrition result in a balance between memory and naïve total
affinity. This is visible in several cases of the grid in Figure 3.
To simplify the study of these “ties,” and the eventual takeover
by naïve responses, the position of the critical runs of Figure 3
are pinpointed in Figure 4. In eight cases ties between primary
and memory occur, at the point where the primary curve is about
to surpass the memory response. Since all primary responses
are identical against any virus, in these eight cases we know
that the total affinity [i.e., TA(t) of Equation (4)] of memory is
comparable to the total affinity of the primary response. Surpasses
are easy to spot in Figure 3, following the coordinate marked on
Figure 4, where distance and attrition are color coded in red and
blue, respectively.

Results for B cells approximately follow those shown for T
cells (see Supplementary Figure 1). This was expected since in
the definition of viruses V0 . . .V8 we have purposefully followed
the same logic (i.e., distance) in the definition of the viral epitopes
with the aim of not favoring the humoral response of one virus
in particular. The conclusion is that, with regards to the balance
between MaN and attrition, the humoral response is consistent
(i.e., is very similar) to the cytotoxic response and, in substance,
it does not prevent or limit the latter but adds to it instead.

Figure 5 shows the effect of attrition on the Tc total affinity
TA(t) defined in Equation (4). Panel A refers to how attrition
influences the total affinity of a homologous response, i.e., when
to VI = VII = V0 resulting in d = 0. Only three levels of
attrition are shown: α = 0 corresponding to absence of attrition,
α = 3 considered the intermediate “optimal” level and α = 5
deemed an excessive value for attrition. The highest α = 5 does
not affect the peak of memory since in the homologous response
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FIGURE 3 | Cytotoxic cell counts (percentage) vs. time. This is the result of different simulations obtained varying the level of attrition α = 0 . . .5 (α = 0 is control case

of no attrition) and the antigenic distance d between the two viral infections, for a total of 6× 9 = 54 panels, each containing average ± standard deviation results of

Tc counts in simulated primary viral infections, followed by a second challenge infection by an identical, or by a selected mutant virus. Color codes: green: response by

naïve T effector cells to primary virus V I injected at tI = 0; orange: cross-reactive memory response primed by the first virus V I and challenged by V II; blue: response

by naïve T effector cells to V II injected at tII = 1000 time steps. See text for further explanation.

the second peak is due to memory recall but trims the curve
via its effect on aged cells. As expected, attrition facilitates the
emergence of higher affinity cells thus increasing TA(t) especially
in the primary response. This is better shown in Figure 6. Panel B
unveils the heterologous response (i.e., VII= V0 thus d = 4), the
total affinity to the VI = V0 is equivalent to the one in panel A.

Panel C shows the same total affinity toVI = V0 but calculated at
the time of the challenge, namely, during the competing presence
of anti-V4 naïve cells. Here, by increasing α, the memory to VI =

V0 disappears. This effect is striking when compared to the case
α = 0 (green curve). Panel D shows the total affinity in a d = 4
experiment but this time relative to VII = V4. The comparison
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FIGURE 4 | This diagram is meant as a visual help to the analysis of Figure 3

and keeps on the same coordinates: virus distance (d = 0...8) vs. attrition level

(α = 0 . . .5). In Figure 3 we see that memory is strong and dominant but can

be trimmed down by turning two independent knobs: the first increases d and

affects affinity, the second through attrition, thins the memory cell population,

by inducing apoptosis. If both knobs are turned up in the same run a synergic

effect is observed. The equal counts of memory and naive cells are due to the

fact that in the clearing of the virus that in the clearing of the virus the total

affinity required is contributed equally by the two populations.

of TA(t) should be made for t > 1000 in panel A. The overall
message is that attrition favors the emergence of higher affinity
clones (blue and purple curves in panel D corresponding to α = 3
and 5 respectively) with respect to the green curve (α = 0).

Figure 6 shows the peak values ofAm(t) as defined in Equation
(3) per match class, from the lowest value of match mc = 13
to the highest N = 16. As in Figure 5 we have three attrition
levels, α = 0, 3, 5 and we run the d = 4 experiment meaning that
VI = V0 and VII = V4, because this case is the one in which
the MaN and the attrition display the greatest effects. The first
observation is that the classm = 15, although not the best match,
reaches the highest affinity peak value. This is expected given the
relatively short time to develop a complete affinity maturation
during either the primary response (panel A) and the secondary
heterologous response (panel B). Another observation pertaining
to the lower panel is that the attrition helps improving the affinity

maturation in all match classes. Moreover, clearly visible in panel
B, while attrition α = 3 helps the maturation ofm = 16 thus the
high matching clones, the case α = 5 knocks them down. This
comparison of levels of attrition suggests that the α = 3 has been
correctly dubbed the moderate or optimal level.

DISCUSSION AND CONCLUSIONS

Viral infections and pandemics are prime examples of the
dynamic between evolution and mutability of viruses on one side
and cross-reactivity of antibodies and cytotoxic cells on the other.
Pandemics are often the result of recurrent infections with distant
cross-reactive agents. The “original antigenic sin” (2) hypothesis,
that is, the case of patients whose memory responds to a previous
priming and whose primary response is blocked by memory,
still lacks an explanation for why cross-reactive anti-virus cells
that unable to clear the virus, are still able to outcompete the
naïve cells. More recently, Monsalvo et al. (29) found signs
of antigenic sin in non-protecting antibodies and low affinity
immune complexes.

In this study we obtained quantitative data that enables
us to propose a plausible mechanistic explanation for this
phenomenon. We measured the ability of the immune system
to deal concurrently with two viruses, one cross-reactive that is
eliminated by memory cells that, as a side effect, block the naïve
response, and another that is not cross-reactive and is eliminated
by a naïve independent response (Figure 1). This shows that the
two processes do not interfere with each other.

It is therefore the degree of cross-reactivity that determines the
engagements of different concurrent immune responses. When
the antigenic distance between the priming and the challenging
virus is increased, memory efficacy E(d) falls immediately
while the compression of naïve response C(d) through antigen
deprivation is affected only later (see Figure 2). This result is
expressed in the combination of the two curves of C(d) and E(d)
as a function of antigenic distance, producing the iconic image of
an “eye,” a representation and measure of MaN.

The efficacy E(d) is sensitive to decreased cross-reactive
affinity, immediately from the first step and continues the descent
as a concave curve, as expected in a cellular response where each
cell’s affinity contributes individually to the final result.

The compression C(d) shows no effect whatsoever in the
first three steps decrease of affinity, while the fourth step causes
only partial block of the naïve engagement. This resistance to
severe decrease of affinity gives a measure of the dominance
exerted by memory over naïve responses by depriving them of
the antigen required for their growth. The display of strength
by memory is certainly sustained by its speed of deployment,
and this experiment detects a second concurrent mechanism
that materializes as a cooperative action. Affinity is the energy
displayed by a single paratope, but in a competition for the
antigen, the presence of many paratopes nearby may decrease
the chances of the antigen to “escape” from another memory
cell. The best example is the higher “catching” ability of
bivalent and pentavalent antibodies compared to Fabmonovalent
antibodies. To mark this difference the serologists of the last
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FIGURE 5 | Effect of attrition on the Tc total affinity TA (t). Panel (A) shows how the attrition influences the total affinity in a d = 0 experiment, i.e., the homologous

response to V I = V II= V0. Only three levels of attrition shown. The highest level of attrition (α = 5) does not affect the peak of memory (in the homologous response

the second peak is due to memory recall) but trims the curve via its effect on aged cells. In other words, as expected, the attrition facilitates the emergence of higher

affinity cells thus increasing the peak values of the total affinity especially in the primary response. This will be shown more clearly in Figure 6. Panel (B) When

simulating a heterologous response (i.e., heterologous challenge V II = V4 thus for viral distance d = 4), the total affinity to the VI = V0 is equivalent to the one in panel

(A). Panel (C) shows the same total affinity to V I = V0 but calculated at the time of the challenge that is during the competing presence of anti-V4 naïve cells. Here, by

increasing the level of attrition, the memory to V I = V0 disappears; this effect is striking when compared to the absence of attrition case of the green curve. Panel (D)

once more shows the total affinity in a d = 4 experiment but this time relative to the virus injected as challenge, i.e., V II = V4. The comparison of the total affinity

should be made with respect to the peak values for t > 1000 in panel A. Clearly, attrition has favored the emergence of higher affinity clones (blue and purple

corresponding to α = 3 and 5, respectively) with respect to the absence of affinity case (green curve).

century invented a new strength inclusive of affinity and
a “cooperation bonus” and called it avidity. Mechanistically
two Fabs will bind two monovalent epitopes, but the weak
forces will alternate periods of sticking together with period
of detachment. Chances are that the two couplets will not
stay in this conformation for long. On the other hand, the
bivalent Fab has a definitely higher chance of staying with
one epitope bound or at least, at short distance, quite stably.
Avidity enhances binding and allows low quality memory cells
to still dominate.

Any immune response, and particularly the fast, cellular
memory is always in need of space (e.g., physical space, metabolic
space, etc.), which like other resources are subject to competition.
Active attrition (5, 30) consists of timely secretion of IFN-β
operated by the same vectors that signal danger, and has the
effect of eliminating crowding of cells by allowing a selection
of more efficient young clones, at the expense of dominant
clones. In this case, the action of the attrition has the specific
connotation of helping the specific response as the thinning of
clonal population will favor clonal expansion randomly. Based

on the results shown in Figure 2, we propose that the difference
in strength between antigen biding and compressing naïve cells
depends on the advantage in favor of the latter: avidity is affinity
enhanced by intra-clone paratope synergisms.

We have shown that the memory anti-naïve effect, the
“necessary” byproduct of memory, can be mitigated by the
attrition signals produced during the early stages of an infection.
These signals kill a fraction of the population of effectors
(Figures 5, 6). While resulting in a decreased speed of the
response, this mechanism gets rid of low affinity cross-reactive
cells thus allowing naïve clones to emerge and eventually achieve
better affinity maturation.

In conclusion, the trimming effect of attrition which mitigates
the MaN effect is well-documented in the present work and
corroborates earlier studies (1, 4, 31). The present data is more
precise as it independently monitors memory and naïve cells thus
facilitating the detection of a phenomenon that affects different
cellular compartments in opposite directions.

The results of this study add new predictions on the
mechanism underpinning memory’s clonal dominance on naïve
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FIGURE 6 | This plot show the peak values of the Am(t) per match classes,

from the lowest m = mc = 13 to the highest m = N = 16. As in Figure 5, we

have three attrition levels α = 0 (corresponding to absence of attrition), α = 3

(considered the “optimal” level) and α = 5 (deemed a excessive value for

attrition) and we run the d = 4 experiment meaning that V I = V0 and V II = V4,

because this case is the one in which the MaN and the attrition display the

greatest effects. The first observation is that m = 15 is the match class which

reaches the highest peak values. This is expected given the relatively short

time to develop a complete affinity maturation during either the primary

response (panel A) and the secondary heterologous response (panel B).

Another observation pertaining the lower panel is that the attrition helps

improving the affinity maturation in all match classes. Moreover, while attrition

α = 3 helps the maturation of m = 16 high affinity clones, the case α = 5

knocks them down (panel B).

responders: the competition is based on affinity to viral antigen,
enhanced in the case of memory, by two factors, speed of action
and intra clonal cooperation, resulting in the deprivation of
antigen for naïve cells. We predict that clonal competitions are
at the core of many pathologies that will not be understood and
treated properly without explaining all causative forces.

In conclusion, results produced by computational models,
however reasonable they may look, must be confirmed by in vivo
or in vitro experiments before being considered scientific truth.
However, their value may be realistically appraised if they trigger
new hypotheses, and help guiding wet lab research. In this
regard we believe that the presented modeling study has indeed
provided a clearer picture of the complex relationship between
MaN and attrition.
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